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CHAPTER 1

AN INTRODUCTION AND OVERVIEW




Optimization is a topic of intense current interest to mathematgcians
and computer scientists with broad potential for application in government
and industry. The importance of maximum efficency at minimum cost concerns
all levels of operations and 1s just one of the manyv uses of optimization
techniques. The translating of information into mathematical functions
by applied mathematicians, with the assistance of modern computers, has

made the analysis of various situations a much more manageable and useful

instrument for the prosperity and enliahtenment of our generation.

Nevertheless, the preponderance of research conducted on such a
useful implement as optimization is impossible to cover within one
prospectus. Therefore, the scope of this research has been focused on
the investigation of iterative methods when applied to the solution of systems
of equations. In general, all optimization techniques rely on iterations,
for which convergence theory is incomplete and quite difficult to anpnly

in multivariable cases.

The problem of optimization entails the analysis of a differentiable
function of several variables. It is necessary to determine the vatues of
the n unconstrained variables Xj,X2,...4%p which make the function f a
maximum or.a minimum. For a given function f(xl,xz,...,xn), the maxima and

minima can only occur where the n equations af = 0, i=1,2,...n are
o X4

simultaneously satisfied, or at a boundary point of the domain of the

variables, [SJ

Thus, it does seem reasonable to consider the solution of svstems of




equations. As a particular example, one can consider the fo]lowinqéfunction:

3 3 )
fix,y) = - - + 10. (1)
(x,y Xy _)3(_ %

By taking partial derivatives, the following system is obtained:
- 2 2 .
fo(x,y) =y -x5=0, fy(xsy) = x - y* = 0. (2)

Simple algebra will secure two solutions to the system (0,0) and (1,1).
It can be shown by analytical techniques that f(1,1) is a maximum and

that (0,0) does not produce an extremum, [6]

Sometimes 1t 1s useful to transform a system such as (2) into an
equilvalent fixed point problem. For example the point (1,1) 4s a fixed
point for the function g, defined by the rule:

g(x,y) = (u,v)
2,.2

r - 2,.2
u =x + x-§§§ +y v=y+ z-i;¥ +x°, (3)
Thus an iterative scheme for approximating the solution might be devised
by the use of g. One starts from a suitable inftial point (xo,yo) and
lets (xp,41s¥n+1) = 9(Xn,¥p). In general the choice of an inftial noint
is quite important. Ideally, the point should be close to the actual
solution. The Source of the chofce of g as well as the motivation leading.

to 1ts definition, will be presented in Chapter 3.

Applying the fixed point method above beginning with the initial




guess xo=yo=10, the following results are obtafned, rounded to four<diqits.

(For actual calculations see Appendix I.)

n Xn yn
1 5.263 5.263
2 2.908 2.908
3 1,756 1.756
4 1,227 1,227
5 1,036 1.036
6 1,001 1,001
7 1.000 ! 1.000
|
Table 1

It is possible to explore some methods analogous to the above in
considerable detail. In order for the author to construct a method, the
theory for a restricted case, systems of linear equations, was consulted.
Using geometric intuition, each equation was conceptualized as a plane,
then the necessary procedure to compute the unique orthogonal projection
from a point not on the plane to a point in the plane was determined.
Subsequently, the method was rediscovered in Pizer's book. [8]
Interestingly, the method is always convergent. (A proof can be found in

the above source,)

This technique will be discussed in Chapter 2, and a generalization
of it to certain non-linear systems is discussed in Chapter 3. Oppor-
tunities for further development and study of this method will also be

discussed. Alternate approaches to the problem are treated in [4]

and [ 7].




CHAPTER I1I

THE LINEAR CASE




Suppose that a system of equations in n variables is defined by n
&
functions Fy, 1 = 1,2,...n. Fi(xl,...xn) = 0. The system is linear if

each Fiis a function of the form:
Fi(XgaeaasXn) = 24X3 + oooot a4xp = by,

Alternatively, the system may be viewed as a matrix eauation, AX - B =10,

and the vector X = (xl,...,xn) may be regarded as a solution of the system.

The typical approaches to the linear case entail hoth algebraic and
iterative techniques. Systems such as AX = b, with coefficients that are
mostly nonzero, are called dense, and primarily are solved.by algorithms
based on Baussian elimination. When A is square, sparse (most coefficients
are zero) and of large order, iterative methods are the preferred method

of so1ut10n.[1]

A thorough discussion justifies an investigation of Gaussian
elimination, the Jacobian method and the Gauss-Seidel method, The chapter
concludes with a discussion of an iterative technique developed by the author and
her advisor, which resulted after concentration primarily on the fterative
approaches. They were chosen in expectation thay they might suagest

generalization to non-1linear problems.

It is important first to point out that, in general, methods for
nonlinear simultaneous equations will extend to linear simultaneous

equations, but the converse {s not true. Therefore, the following




methods should be understood only to apply to the linear case.

Gaussian Elimination

Some readers will recall that Gaussian elimination involves the

simplification of a system of equations using row reductions. These,

applied to the augumented co-efficient matrix, result in reduction to

a lower triangular matrix.

to solve,

The resulting system is then much easier

An example {s the linear system

x) + 2xp + 4x3 = 3

x1,+

2x3 =0

2x1 + 4x2 + X3 = 3

represented by the matrix

-
1 2
1 N
2 4

4
2
0

3
n
3

-

)

which reduces to

1 0 0 l
0 1 0 |
0 0 1
e |

The latter matrix represents a system equivalent to the original,

It {s certainly trivial to identify the vector }1 = -6/7 as a

x2 = 15/14

x3 + 3/7

solution to the system. [2] The method also works successfully on a system




with infinite solutions or with no solutions.

It should be noted that Gaussian elimination can become less
practical for problems on a sufficiently large scale. When n is small,
the method is unquestionably preferred. If n= 10, Gaussian elimination
requires only 430 operations. Compare this to the number of operations
required by Cramer's rule, another popular technique. For the case

n = 10, the number of operafions is 39,916,800. [1]

The Jacobian Method

The Jacobian method uses simultaneous displacements. At the end
of each {teration, the components of an approximate solution xiiare
replaced simultaneously with the corresponding components of a vector

x1+1, In general, for the equation AX=b

M s

i+l
X = b -

Ay, x§ for J= 1,2,...n;
J V Jl

j

<o =

where the terms Aik are entries of A; the terms bj are components of B,

That is, the first equation solves for X1» the second equation for X0
and so on, up through the nth equation for X The jth equation produces

+1

a value for x} by using the values of xL on the right side of the

equation,

The convergence of the method can sometimes be assured by first




e .

: , )
making the matrix either row or column diagonally dominant. A matrix

A {s said to be row diagonally dominant if
n

Iaii +7 2.

jAi

for all i=1,2,...n,

a

and column diagonally dominant 1f

KX |>:§i | 234 ] for all 1 ,2,...n. [9]

J#i
It is important to point out that convergence is possible even if these

conditions do not*app1y.

Consider,

x1 + 6x2 + 2x3 = 15

x1 + x2 - 6x3 = .3

6x1 + X + x3 2 9,

In accordance with the above, the equations are rearranged as follows:

1]
O

6x1 + x2 + x3

X + 6x + 2x
1 2 3

] n
] —
w o

X+ x, = bx
1 2 3
Solve equation {1 for Xy

x, = 3/2 - (1/6)xy - (1/6)%3
5/2 - (1/6)xq - (1/3)x3
1/2 + (1/6)xy + (1/6)xz.

X2

X
3
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0
Let x = (0,0,0)
x} = 3/2 x2 = 1 3 = | 23720
5/2 25/12 35/18
1/2 776 | 73772 |

The sequence { x1} is seemingly converging. [?J

Gauss - Seidel Iteration

The Gauss - Seidel method applies essentially the same idea as
the Jacobian. A key difference is that the computed values are
employed as soon as possible to obtain each component x}. In general,
for AX = B the formal equation for a stage of the Gauss - Seidel method

is as follows:

i+1 3-1 i+1 n |

X = b - A X - A. X

3 o= k >7 e
2 k=1 lgj‘ k=i+1 33

For example, application of this method to the above using fnitial

vector - (0,0,0) yields:

x! = 32

5/2 - 1/6 (3/2) - 1/3 (0) = 9/4

XL = 1/2 + 1/6 (3/2) + 1/6 (9/4) = 9/8.
Thus, x! = (3/2,9/4,9/8). Returning to equation one, this estimate

e used to compute X1s Xo x3, and 'so forth.[g]




Equation 1 | Equation 1

X
m-—-—— S ——
Equation 2
> >
s} Xy
Xo Xo
N N
Equation 2 Equat{on 2
@ s Equation 1
/ Xq
® Equation 1
|

-

1 1

75
Figure 1
It might be noted at this point that convergence is quaranteed if both

of the diagonal dominance conditions mentioned previously apnly. Geometrically

the convergence looks 1ike the above. [?]
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The Orthogonal Projection Method

The following method was developed by the author and her advisor.
After initial development of the method, a thorough search of relevant
Titerature resulted in the discovery that the method had previously

been employed. A proof for convergence is found in Pizer's book.‘?]

For clarity the discussion fis confined to the case n = 3. The

method extends easily to an arbitrarily large system,

In general, given a plane

ayxy * 3%, tagX, = b, (1)

and a point P = (u1, Uys u3) not on the plane, the problem is to find
the unique point Q = (ui, Uss ué) on the plane such that the vector

P-0) is perpendicular to the plane.
() = gt - -y
P-0 <u1 Ujs U, - Uzs U u3t> . (2)

- _I _l _.
Since P-Q is paraltel to <ia1. a2, a3:> , <;u1 ujs u2 Uss u3 u3:>

1s equal to C <;a1, az, a3;7 for some constant scalar C.

- ' = ) = -
uy -y Ca1 uy = uy Ca1
[ L -
uy = Uy = Ca2 imply u, Uy ng (3)
u, - uj = Cag uy = uz - Cas.
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Replacing the variables in equation (1) by the coordinates of 0 yields:

ul

] [ J—
ay 1 + ayu, + a.ul = b,

373

and combining (1) and (3)

al(u1 - cal) + a2(u2 - caz) + a3(u3 - ca3) = b, (4)
Next solve for C.
a U, + aju, + aquq = b
1"1 242 343 - C. (5)

2 2 2
ag + a5 + a3

Thus, the vector <u'1. ué. u§> is obtained by using (5) in (3).

A FORTRAN Program (Appendix 1I) was used to implement the algorithm

for varfous choices of n, giving the results in Table 2 for the system,

- + | .
;1 x2 2x3 3,
le + 3x3 = 7,
4x., - " = .
Xq 3x2 x3 0

For brevity only one iterate from each cvcle is included. The initidl

guess was (10, 10, 10). The jterates are rounded off to four places.

The exact solution is (2, 3, -1).

The method described above was apparently discovered by Dr. Lester
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— I
— f
n X1 X2 | X3 '!
" t 1 E—
0 10. 10. 10, !
3 6.9529 . 9.843 -7 |

6 5.0673 . 7.0523 | -3.5876
9 3.8999 62708 -3.2129 |
12 3.1768 | s.m830 | -2.5443 |

15 2,729 43073 L -2.00

18 2.4516 | 3.8145 -1.6372

21 2.2797 | 3.5059 -1.3988
24 2.1733 | 3.3138 -1.2482 i
27 2.1073 L 3.1945 -1.154 |
30 2.0665 l 3,1205 -1.0955 !
. |
' 1

Table 2

Levy of Long Island Jew1§h Medical Center, {5] Based on the Pythogorean
theorem, the iteratien moves closer and closer to the intersection of

the planes. As mentioned earlier, the orthogonal projection method can
be shown to be always convergent, provided a solution exists and is

unique,




CHAPTER I1I

THE NON-LINEAR CASE




&
The Newton-Raphson method seems to be the proper point of departure

into the nonlinear investigation. Based on a Taylor Series approach, the

method for one variable expands to a multiple variable application.

Newton-Raphson

If f is continous and twice differentiable, then

Flxgyg) = Flxg) = £ (xppq = xq) £ O (xgyg - x)2+ ..
2!
If f(x1+1) is close to zero, and x; is very close to x, , so that

(x1+1 - x1)2 and all higher powers can be neglected. then

0~ f(x1) + f'(x1)(x1+1 - x1).

This suggests the equation:

X1'+1 e Xi - f(Xi)

f
tx,)
which is commonly called the Newton-Raphson method.
Given two continuous and twice differentiable functions, fl and fz,
definition of two simultaneous equations is possible:

filxoy) =05 f (xy) = 0. (1).




- 14 -

To generate a sequence {(x1.yi)} , which converges to a solution, one

should use the two-dimensional Taylor series, exnpressing fl(x1+l,V1+1) as

fl(x1 ’yi) +af1 (X 1 - x'i) +&f1 (V - V) ity

i+ i+l i

3 x dy
where the partial derivatives 4f, and Af, are evaluated at x = x,
ax Ay
and y = Yy- In the same way, f2 is expanded as follows:
folyyYys) = Fo(Xeayy) #3%, Xy, - x ) *Afp Wym i)+ e

3 x dy

If (x ) and (xi,y1) are very close to the root (x,y), the equations

§+1°Y1+1
are simplified to:

0% f(xay,) *3f) Xy - x)* af (Vyeq = ¥4)

dy

Ax

~ f + - + f -v.,).
,2(x1.y1.) af, (x4 x,) af, (y3+1 y])

a X Cﬁy
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Rearranging
afl (X‘ -xi) +af1 (.Y.i+1 = y-i)x ‘fl (X.|s)’1)

ax dy

(2)

A

3 x Ay

For convenience,let h = (xi+1 - xi) and k = (y1+1 - yi). These quations

can now be solved for h and k by the use of determinants, provided the

determinant of the coefficient matrix does not vanish at any time during

the {teration process. Therefore,

dy ax

'fz(X.',.Yi) @_f_a. (}..fg. 'fg(xf .}'1.)
dy dx

h = ) k =

afl afl af afl

aAx Ay dx Ay

A, af, at,  af, |

dx a.y ax dy

The denominator is commonly called the Jacobian of the system..
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After h and k are determined, Xi41 and Yi+1 must be evaluated. To compute

the next approximatfon set Xy = x1+1. .yi = Yi41 and repeat.[9:]

The discerning reader might notice that the system (2) can be

expressed in matrix notation.

I (I LKD) = F(xd), (3)

where J is the Jacobian matrix for the vector valued function F, x!

{s the vector (xi,yi). and xI*l is the next iterate (x1+1,y1+1).
If equation (3) is solved for xr+1, the following is obtained:

xIFL o D _ 9= (k1) F(xD), (4)

The latter equation, which generalizes clearly to systems with an
arbitrary number of variables, {s often taken as a definition of
Newton's method for {teratively So]ving systems of equations. Since
the matrix J is difficult to invert, the usual procedure is to solve
equation (3) for the vector xI*1o 4l , as indicated earlier. The

necessity of solving a matrix equation is one of the chief drawbacks

of the method, especially as the number of unknowns increases.

Equation (4) also suggests the definition of a fixed point problem

G(X) = X, which is equilvalent to the problem F(x) = O:

6(x) = x + 371 (x) F(x). (5)
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For the examp1e discussed in Chapter 1, the function F is defined by two

equatfons:

fl(X.y) =y - x2, fz(x,y) = X - yz.

The matrixes J(x,y) and J'l(x,y) are given by:

P

J(x,y) = [-2x 1 ; J=1(x,y) =(éy/(1-4xy) 1/(1-4x4;
1 -2y Lzl/(l-@xy) 2x/{1-4xy

-

By performing the computations jndicated in (5) one obtains the followina

representation of G used in Chapter 1 to solve F(x,y) = (0,0).

2

9 (xay) = x = x =292 + ¥2, 9,(xy) =y - v 2P b x

l-.4xy 1-4xy . )

The Newton-Raphson method in practice is ouites  complicated.
The requirement that the Jacobian is not allowed to be zero is difficult
to predict without calculations and includes the risk that the process
will be inoperative. In general, for n simultaneous equations in n
unknowns, one must find n? partial derivatives, and must then solve for
n increments h, k... by solving n simul taneous equations for n unknowns.
Therefore, mathematicians have sought an easier method, which, while

perhaps not converging as quickly, is easier to apn]y.@]

One modification of the Mewton-Raphson method consists of applying

the single variable Newton-Raphson method n times, once for each variable,
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assuming the other variables are fixed.

In general, for two equations and two unknowns:
fl(x,y) = 0 and fé(x,y) = 0, and

using x4 and Yo S initial approximations, one calculates a new value

X1» from the single-variable Newton-Raphson method:

Xq = Xg = fl(xo,yo)
f

.
X

where _Jfl/AX fs evaluated at x, and y . Using fz and the most recent

values of x and y, in this case Xy and Yo» @ NeW value Y1 is calculated

as follows:
Y1 =Y = Fplxysy,)

df,
dy
After obtaining xy and y

, one uses f, to calculate Xo s and so on.

1l 1

Note that the choice of using fl to calculate a new x and using
fg to calculate a new y is not arbitrary. In fact, an improper choice
of functions can lead to diveraence. The function which has the

Steepest descent at the solution point should be used to find the next
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]

There exists many other iterative methods designed to deal with
single-variable, non-linear equations; the bisection method, the method
of false position and various Picard iterations. However, methods like
bisection and false position seem difficult to extend to many dimensions.
The extension from single equations to systems of equations is a topic

addressed briefly in most sources investigated by this researcher. One

example, of course, is the modified Newton-Raphson method described above,

Other techniques have been devised in various research papers. {43 and [ldx

The following, an extension of the orthogonal vector method, is
based partly on the underlying idea of the Gauss-Seidel iteration
technique. The method apparently works with some effectiveness in
several cases, though not in all of those attempted. Details of these
results and potentially sufficient conditions for convergence will.be

discussed following the initial derivation,

Modified Orthoqonal Vector Method

Suppose a system of equations 1s given,
F1(x1’ . . . ’X ) = 0. (8)

SUppOSQ' in addition, that for each equation, there is a unique variahle

Xj» S0 that the particular equation can be solved for x1.1n'terms of the
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other variables. Thus, one can write (8) in the form;

A

Xy = f1 (xl.. CoeaXys e e ,xn). (

O
~—

%)

N 0 0 i :
If P, * (x1, x2, ceees X the initial point, and if ay fs the point

obtained in the surface F by varying only the first coordinate of Py
then:

- 0 0 0
Xy = fl(xz.. . ..xn) )

_ =~ 0
and a, = (xl, Xps o o os X )

The plane tangent to F, at 9, is represented analytically by:

~ 0 0
Xy =X, = Qj+ (x2 - Xp) t ot df,  (x = xp). (10)
d x, ax,

In order to project orthogonally to a point Py in this plane, a normal

vector 1s {dentifided as:

n= (-1, af 1_f")
L\Xz jxn

Then Py = P, = cn (for some constant c).

More specifically, if p1 = (xi, 1. = x;) then:

X1 -x%=_.¢, and xl o x% = cJf for 2<1 <n, (11)
1 1 I R
dx

i

SRR RRR—
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1solating the coordinates of Py yields:

x%sx(l’-c; x11+c§11_ for 2< {<n, (12)
X
i

To solve for ¢, one uses the equation of the tangent plane (10) and

the system (11):

1 1 1 1 - - n n
3x2 dxn
K@ - %y = ¢ +3fy cdf>+ ..+A__f_1_<c§_f_1_>
Axy Ax, an axn
= 2 ?
c {14 a_f_l_) +...+(d__f_r>
dxz axn
c = xo--;‘ (13)
N X
o)
\ax dy
2 n

Now, the fterate p_ is computed from (12).

To obtain a general iterative step; 1 €1 <n, one follows an

entirely similar procedure.

i i
If p. =
Py = (xq, , X”)i
x! = 'F_(xi, e ,Q,, .xi)
i i ] i
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c = X, = X where

::vm

e @ Y (8 Y

. \ i Aj i
all partials are evaluated at (xl, i & N xi. . e ey xn).
xrl = x: - c, and for j# 1, x}ﬂ + cg_:(’_;

1f i7n, then i = nq + r for some r, 0<r<n, q21. Thus pj,; can
be generated from pyq in the same way that py is generated from p,

above when 14&n,

The method was applied on several examples, producing the following

results. The algorithm was terminated when %j. \\p - Py. 1 <& .

{2qn+l

The sum is taken over a cycle of n iterates. £ =1,

Example 1

This problem arose in Chapter 1 in connection with the problem of

determining the critical points for the function:

3 3
f(x,y) = xy - x_ - + 10,
Y — .é_




Table 4

R ‘ n X Yn n X Y
0 1. 2. 0 .6 .6
1 1.326 1.5318 1 ,7348 . 4856
2 1.1748 1.318 2 731 L4704
3 il 1.1898 3 .7161 L4475
4 1.0598 1.1156 4 .6863 L4051
' 5 1,0365 1.0714 5 .6213 . 3234
6 L4575 L1691
A . 1144 0113
8 1.928E-04 | 3.7126E-08
9 0.0 0.0
Table 3
Example 2
X=Y- y3
y = x° =X
n Xn Yn
0 10. 10.
1 6.7032 6.6666
2 4,5248 4,4436
3 3.099 2.9595
4 2.1868 1.9823
5 1.6271 1.2709
6 1,2909 7173
7 .5297 -.382
8 -,0632 .05%44
9 1.5865E-04 | -1,5866E-04
10 -4.02 E-12| 4.02 E-12
= =
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Example 2A

A modification of Example 2 to:

Z(y-y3)
= 2(x3-x),

>
]

<
1

does not converge from Py = (10,10), but does converge from P, = (.4,.4),

Example 3 This problem known as Rosenblock's parabolic va11ey is found in [4] .

F(x,y) = 100(y-x2)2 + (1-x)?

X = Yy

y = x% - 1/200x + 1/200 £ = .001

n X Yy n X v

0 1.2 1.0 0 0.86 1.14

] 1.0393 1,803 1 1.0297 | 1.0605

2 1.0393 1.803 2 1.0297 | 1.0605
Table 5

Example 4 (]

F(x,y,2) = (x-y+z)? + (y+z-X)2 + (xty-z)?

x = (y+z)/3
y = (x+z)/3
z = (x+y)/3




- 25 -

— ]
n X Yn z, n xn yn zn
0 .5 1, .5 0 100. -1. 2.5

1 .4038 .6574 | .554 1 26.5984 23.1687116.589
2 .3352 .5631 | .4424 2 23.2201 18,1613(13.7938
3 L2772 L4637 | .3678 3 19.0713 15.1385(11.4033
4 .2293 .3838 | .304 4 15,7928 12,5107 | 9.4345
5 . 1897 .3175 | .2516 5 13.0632 10,3512 | 7.8048
6 . 1569 .2627 | .2081 6 10.807 8.5631 | 6.4567
7 .1298 L2173 | L1722 7 8.9403 7.084 | 5,3415
8 . 1074 .1798 | .1424 8 7.396 5.8604 | 4,4188
9 . 0888 .1487 | .1178 9 6.1186 4,8482 | 3.6556
10 .0735 . 123 .0974 10 5.0617 4,0108 | 3.0242
Bl .0608 .1018 | .0806 11 4,1874 3.318 |{2,5018
12 .0503 .0842 | .0667 12 3.4641 2.7449 | 2,0697
13 .0416 .0697 | .0552 13 2.8658 2.2708 | 1.7122
14 .0344 .0576 | .0456 14 2,3708 1.8786 {1.4164
16 .0284 .0477 | 0378 15 1.9613 1.5541 [1.1718
16 .0236 .0394 | .0312 16 1,6225 1.2856 | .9694
17 .0348 .0275 | .0207 17 1.3422 1,0636 | .802
18 1,11 . 8799 .6634
19 .9186 .7279 | .5433

20 .75 .6022 | .454

21 .6287 .4981 | .3756

22 .52 L4121 | 3107

23 .4304 .3409 | ,257
24 . 3559 .282 L2127
25 .2945 .2333 | .1759
26 .2436 .1930 | .1455
27 .2015 .1597 | .1204
28 . 1667 L1321 | .0996
29 .1379 .1093 | .0824
30 . 1141 .0804 | .0682
31 .0944 .0748 | .0564

32 .0781 .0619 | 0467
33 .0646 ,0512 | .0386

34 .0534 .0423 | .0319

35 .0442 .035 .0264
36 .0366 .029 | .0219

J
Table 6
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convergence_and Efficiency Considerations

At this writing, attempts to obtain sufficient conditions for convergence
of the preceding iteration technique have been unsuccessful., It is strongly
suspected that convergence can be guaranteed by the choice of an initial
point P0 sufficiently close to the solution P, provided all of the first
and second order partial derivatives of the functions fi are continuous at
P. The computational results above lend considerable support to this
conjecture Note, the method 1s a fixed point type of iteration. I.e.,

a function g so that p = g(pn) is obtainable for each iterate Ppe

n+1
Thus. a well known convergence theorem might be useful in particular cases.

The following theorem is taken from [8].

If g4 denotes the coordinate functions defining g, the following
can be assumed,

Theorem Let K be a positive constant with k<1. Let p be a fixed
point for the function g, and let R be a positive constant, If

n
2.
k=1

QjL; (x)/ 2 k for all x satisfyinalp - x| =R, Then the
ax :
k

iteration given by p n+1 = q(pn) converges to n for any choice of initial
point satisfying )p pLZR.

For a slightly different version of this result seeB] .
In order to make a rough comparison between the efficiency of the

orthogonal projection method and Mewton's method, the number of arithmetic

operations reauired for the projection method was checked. To compute one
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cycle of iterates, p™, pmn+1’ .

oo 5 o™ the number of ODeY‘aéans requi red

is 4nZ-n. In addition n? + n function evaluations are requifed. By comparison
Newton's method requires the same number of function evaluations as well as

the solution of a linear system of n equations in n variables. As n increases

in size, the speed of machine operation might become a factor in favor of

the projection algorithm, since the number of operations needed to solve the

linear system of n equations is 0(n3).

The computer implementation used by the author to test the projection
method is indicated in Appendix III. The storage requirements for this program
are roughly the same as would be needed for an implementation of Newton's
method. Nevertheless , it now seems that the program is less effieient

in this regard than it might be. For example, it does not seem necessarv

to require space for all of the n2 partial derivatives at any one time. At most n

cells should be sufficient for each iterative step. Another economy might be
obtained by storing each of the function values f; (xT, . .QT, . .x:) in

the same cell. These considerations would become significant if the algorithm
is applied to large-scale problems such as those commonly encountered in the

nmerical solutions of partial differential equations. It is acknowledged,

of course, that the number of function evaluations 1imits this possibility

significantly.
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Conclusion

In conclusion, it is necessary to mention certain aspects of this work
which are believed to warrant further study. Due to time restraints, the
algorithm was not applied to a sufficiently wide variety of problems. Thus,
further testing of the algorithm would provide useful insight into matters
of efficiency, speed and storage requirements. In addition, this information
would provide adequate data for a comparison between the method and other

well known techniques, such as Newton's method.

A potential limitation of the orthogonal method is the necessity to
solve for x4 in each equation and compute derivatives for the exnlicit
function obtained thereby. In some problems, neither of these steps is
practicable, Perhaps an application of the one variable version of Newton's
method for approximating X4 in conjunction with the use of implicit
differentiation for evaluation of partial derivatives would extend applicability

of the algorithm to some of these more difficult problems.

There are some aspects of optimization,currently of great interest,
have not been touched upon at all, This is perhaps, best illustrated by the
fact that these solutions or results do not in any case help to determine if
an extremum is located at the point in question. Nevertheless, the
functions to be optimized usually exhibit behavior near a critical point
which can help to identify the point as an extremum. For example, the
directional derivatives may change in sign at the point, or the second order

partial derivatives may be positive definite near the point. Such features




might be useful in the construction of tvpes of algorithms which are totally

dnlfferent from the approach of this paper. For further information, see

[4] and [5

Needless to say, the facts are not all here. The author has left many
open questions which require further research. Hopefully, this work will

be extended beyond {ts=present stance, .either by .the .author and/or an

intrigued reader.
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APPENDIX I

y + !-2X!2+X2

dxy-1

) ’10
Xo Yo o .
10 + 10-2(10)7+10

2

XI’YI*
4(10) -1
@ =10 - 4.7368
=5, 2632
3 2
xgsy2=5.2632 + 5.2632-2(5.2632) +(5.2632)
?

4(5.2632) -1

25,2632 - 2.355
. 22,9082
3
X 7y #2.9082 + 2.9082-2(2.9082) +(2.29082)
5
4(2.9082) -1
22,9082 - 1.1521
=1.7559
X,%y,=1.7659 - .5284
=1.2274
Xoeye=1.2274 - 19186
=1.0355
X=yc=1.0355 - 0343
=1.001

*7%y,=1,001 - .000998
=1.000




APPENDIX 1I

THIS PROGRAM COMPUTES THE POINT OF INTERSECTION OF N PLANES IN Ry,
8y ORTHOGONAL PROJECTIONS INITIATED BY AN INITIAL GUESS

TABLISH SIZE OF ARRAYS -
giMENSION P(11,10), A(10,10), B(10), D(10)

IN NUMBER OF PLANES BEING CONSIDERED
(1,600) N

EAD IN ERROR ALLOWANCE AND MAXIMUM NUMBER OF ALLOWED ITERATIONS
READ (1,610) E, MAXIT

M=0
WRITE (3,620) N, E, MAXIT

READ IN AND WRITE INITIAL GUESS
D0 10 J=1,N
READ (1,630) P(1,J)
10 CONTINUE
WRITE (3,640) (P(1,Jd),J=1,N)

READ AND WRITE EQUATIONS

00 20 I=1,N

‘DO 30 J=1,N

READ (1,650) A(I,J)
30 CONTINUE

READ (1,660)B§I) '

WRITE (3,670) (A(I,d),J=1,N),B(I)
20 CONTINUE

EAD
EAD

C  COMPUTE DENOMINATOR

D0 45 I=1,N
D(1)=0.0
DO 40 J=1,N
G=A(1,J)
D(I)=(D(I)+A(I,J)**2)

40 CONTINUE

45 CONTINUE

0

-

iPUTE C

D =
.

100

50

OOMITI O Me— O
nonnoun i

c ggMPUTE ORTHOGONAL PROJECTION POINT ANMD REPLACE INITIAL GUESS WITH IT
60 J=1,N
60 P(I+1,J)=P(1,d)-A(I,J)*C
WRITE (3, 680) P(I yJ),d=1,N)




APPENDIX II (Continued)

EW PROJECTION POINT HAS BEEN COMPUTED FOR EACH PLANE

HECK TO SEE IF N
; 0 TO 200

IF (1 .EQ. N) G
IF NOT RETURM FOR MORE DATA

1=1+1 .
60 TO 100

FIRST EHECK TO SEE IF MAXIMUM NUMBER OF ITERATIONS HAS OCCURRED

M=M+1
IF (M .GE. MAXIT) STOP

CHECK TO SEE IF CONCLUSION REACHED
§=0.0

D0 300 I=1,N

D0 300 J=1,N

S=S+ ABS(P(I J) - P(I+1,d))
CONTINUE

IF (S .GE. E) THEN DO

D0 400 J=1,N

I=1 ]

P(1,J)=P(N+1,J)

CONTINUE

&0 TO 100

ELSE DO

WRITE (3,700) (P(N+1,J),J=1,N)
END IF




220

230
235
240
250

260
270
280
290
292
300
310
320
330
340
350
352
354
355
360
370
380
385
390
400

APPENDIX III

DIM R(10): DIM P(10,10): DIM F(10): DIM D(10,10): DIM R1(10)

PRINT "SELECT ONE OF SUBROUTINES" .
INPUT Q

PRINT "ENTER NUMBER OF EQUATIONS BEING CONSIDERED"
INPUT N |

PRINT "ENTER ERROR ALLOWANCE *

INPUT E |

PRINT "ENTER MAXIMUM NUMBER OF ITERATIONS ALLOWED"
INPUT M

PRINT

FORJ=1TON

PRINT "ENTER INITIAL GUESS", J

INPUT R(J)

LET R1(J) = R(J)

NEXT J

PRINT

REM “SET UP COUNTER TO MONITOR NUMBER OF ITERATIONS"
LET K = 0

LET I = 0

I=1+1

PRINT

REM "THE SUBROUTINE MUST HAVE BEEN CALCULATED AND ENTERED PREVIOUSLY
FOR EACH NON-LINEAR EQUATION"

GOSUB. 620

LET X = R I;

LET Y = F(I

PRINT

REM "COMPUTE SCALAR C"
LET S =1

FORJ = 1TON

IF J = I THEN 300

LET S = S + D(I,d) **.2
NEXT J
LETC=(X=-Y)/S
PRINT

REM "COMPUTE INDIVIDUAL CORDINATE OF PROJECTION POINT"
FORJ =1TON

IF J = I THEN 355

LET P(I,d) = R(J) + C * D(I,J)

GO TO 360 ‘

LET P(1,d) = R(J) - C

NEXT J
FORJ =1TON
PRINT P(I,J),

LET R(J) = P(1,J)
NEXT J ‘
PRINT




APPENDIX III (Continued)

405 REM “CHECK IF NEW PROJECTION POINT HAS BEEN COMPUTED FOR EACH SURFACE"
410 IF I = N THEN 425 é

420 GO TO 200

425 LET K=K+ 1

426 REM "IF. MAXIMUM NUMBER OF ITERATIONS HAVE BEEN COMPUTED STOP"
430 IF K M THEN 550

435 REM "CHECK TO SEE IF CONCLUSION REACHED"
437 LET T = 0.0

440 FORJ =1TON

445 LET I =1

447 LET T =T + ABS (R1(J) - P(1,J))
450 FOR 1 # 2 TON

460 T =T + ABS (P(I,d) - P(I-1,J))
470 NEXT I

480 NEXT J

500 IF T E THEN 560

510 PRINT "POINT OF INTERSECTION IS"
520 FOR J =1 TON

530 PRINT P(N,J)

540 NEXT J

543 PRINT

544 PRINT

545 PRINT "NUMBER OF CYCLES", K
550 STOP

560 FOR J = 1 TO N

570 LET R1{J) = R(J)

580 NEXT J

590 GO TO 190

620 IF Q = 1 THEN 1000
630 IF Q = 2 THEN 900

640 IF Q = 3 THEN 960

650 IF Q = 4 THEN 970

660 REM "NEXT SUBROUTINE GOES HERE"
900 GO SUB 2000

950 RETURN

960 GO SUB 3000

965 RETURN

970 GO SUB 4000

975 RETURN

1000 IF I = 1 THEN 1300
1100 LET F(I) = R(1) **2
1200 LET D(I,1) = 2 * R(1)
1205 RETURN

1300 LET F(I) = R(2) **2
1400 LET D(1,2) = 2 * R(2)
1405 RETURN




2000
2100
2200
2250

2300
2400
2500

3000
3100
3200
3205

3300
3400
3401

4000
4001
4100
4200
4205
4210

4300
4400
4405
4406

4500
4600
4700
4701
4702

APPENDIX III (Continued)

If I = 1 THEN 2300
LET F(I) = R(1) **3 - R(1)
LET D(I 1) =3 * R(l) *%2 o ]
RETURN

LET F(I) = R(2) - R(2) **3
LET D(1,2) =1 -3 * R(2) **

RETURN

IF T = 1 THEN 3300

LET F(1) = R( ) *%2 - 1 (200 * R(1)) + 1 / 200
LET D(I,1) = R(1) + 1/ (200 * R(1) **2)
RETURN

LET F(I) = SQR (R(2)) :

LET D(1,2) =1/ (2 * (SQR (R(2))))

RETURN

IF I = 1 THEN 4300

IF T = 2 THEN 4500

LET F(I) = (R(1) + R(2)) / 3

LET D(I,1) = 1/3
LET D(I,2) = 1/3
RETURN

LET F(I) = (R(2) + R(3))/ 3
LET 0(1,2; = 1/3

LET D(1,3) = 1/3

RETURN

LET Fé = R(1)
LET D(I g = 1/3
LET D(1,3) = 1/3
RETURN

END

+ R(3)) /3
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